
JOURNAL OF COMPUTATIONAL PHYSICS 47, 199-210 (1982) 

An Explicit Finite-Difference Scheme with 
Exact Conservation Properties 

J. M. SANZ-SERNA 

Departamento de Matemdticas, 
Facultad de Ciencias, Universidad de1 Pais Vasco, Lejona (Vizcaya), Spain 

Received October 5, 1981 

A finite difference scheme for the numerical study of the Korteweg-de Vries equation is 
constructed. It is explicit and yet conserves exactly the energy of the computed solutions. The 
underlying idea can also be applied to more general equations or systems. Numerical 
experiments are included. 

1. INTRODUCTION 

When a partial differential equation modelling wave-like phenomena is to be 
approximated numerically, it is highly desirable that the discrete scheme should 
conserve the discrete analogues of the quantities that are conserved by the equation. 
In particular, the conservation of a positive definite quadratic quantity in some cases 
rules out the occurrence of nonlinear instabilities [ 141. It is therefore not surprising 
that many papers in the past have been devoted to the construction of schemes with 
exact conservation properties. Arakawa’s work [3] is now classic; other papers on 
conservation properties are quoted by Morton [ 141 and Navon [ 151. 

In most instances, the construction of schemes conserving quadratic quantities is 
confined to the semidiscrete case, i.e., only the space variables are discretized, while 
the time is kept continuous so as to approximate the original partial differential 
equation by a system of ordinary differential equations. In practice, however, the 
solution of this semidiscrete system must be obtained by means of a numerical 
method for ordinary differential equations, and as a result, the conservation 
properties of the semidiscrete approximation may be lost in the integration in time. 

In fact, the use of an explicit method for the time integration will almost invariably 
result in failure of the attempt to conserve quadratic quantities, and then nonlinear 
instability can be a threat. (See [7, p. 4801 and the discussion in Section 5.) 

In this paper, we introduce a scheme for the integration in time of partial 
differential equations which is explicit and yet capable of conserving exactly the 
quadratic functionals conserved by the semidiscrete approximation. 
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The new scheme, which is reminiscent of the usual leapfrog technique, will be 
presented first in the particular case of the Korteweg-de Vries (KdV) equation 

Uf + uu, + EUxxx = 0, 

and extended later to more general situations. 

E > 0, (l-1) 

The KdV equation provides a valuable test example. On the one hand, it possesses 
solutions in closed form which can be employed in the assessment of the accuracy of 
the numerical approximations. On the other hand, it describes phenomena requiring 
large-scale time calculations, and this is the sort of situation in which conservation 
properties are of paramount importance. 

References to the numerical solution of (1.1) include Zabusky and Kruskal [22], 
Vliegenthart [20], Greig and Morris [9], Gazdag [8], Canosa and Gazdag [4], Abe 
and Inoue [ 11, Alexander and Morris [2], Whalbin [21], Sanz-Serna and Christie 
[ 171, Schoombie [ 18, 191, Kuo Pen-Yu and Sanz-Serna [lo], and Christie et al. [S]. 

In Section 2, we review some of the properties of the Zabusky and Kruskal 
leapfrog scheme. Sections 3 and 4 describe the new method as applied to the KdV 
equation, In fact, two versions of the method are proposed: the fixed-step, conser- 
vative scheme (FSC) and the self-adaptive step, conservative scheme (SASC). 
Although we do not advocate the practical use of the FSC method, we have included 
it here because it is an intermediate step in the construction of the SASC scheme, and 
because it exhibits certain properties that may be of theoretical interest. In Section 5, 
the material of the two previous sections is generalized to cover more general 
equations. 

2. THE ZABUSKY-KRUSKAL SCHEME 

We are concerned with the initial-value problem given by Eq. (l.l), together with 
the initial condition 

u(x, 0) =f(x), -co<x<co. (2.1) 

In 1965, Zabusky and Kruskal suggested the following scheme for the approx- 
imation of the solutions of (1.1): 

(1/2k)(Uj”+’ - Uj”-‘)+ (1/6h)(Ui”+, + U;+ U;-,)(U;+, - Uj”p,) 

+ w2~3w;+* - 2uyt1 + 2q, - u;-*) = 0. (2.2) 

Here k, h denote the mesh sizes in the x and t variables, respectively, and UJ’ is an 
approximation to z&h, nk). We assume that we are interested in solutions of (1.1) 
that, for the range of time under consideration, are negligible outside an interval 
0 Q x < L. (Note that the KdV equation has solutions U(X, t) that decrease exponen- 
tially as Ix/-, co.) Then 

u,“= uy=u,“_,= u,=o, n = 1, 2, 3 ,..., (2.3) 
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where J= L/h are suitable boundary coriditions for (2.1) 19, 17-19). The situation is 
not greatly altered if periodic boundary conditions rather than (2.3) are considered. 
The initial condition 

q =S(jh), j = 0, l)...) J, (2.4) 

must be supplemented with a starting procedure to compute U,!, and an obvious 
choice is [20]: 

(l/k)(U; - Uj’) + (1/‘6h)(q+ I+ q + q- ,>(q+ , - Uj- J 

+ (c/2h3)(t$‘+, - 2C$+ 1 + 2qm I - t$“_,) = 0. (2.5) 

The analysis of the scheme (2.2)-(2.5) is best performed if we introduce the 
auxiliary system of ordinary differential equations 

f U(f) = F(W)), (2.6) 

where U(t) is the vector [U,(t), U,(t),..., UJAz(t)lT, and F(U) is a nonlinear vector 
function with components 

‘j(U) = -(1/6h)(Uj+ I(t) + uj(t) + uj-l(t)>(uj+ I(t) - uj- I(t)) 

- (E/2h3)(Uj+z(t> - 2Uj+,(f) + 2uj- I(t) - uj-z(t)), 

(We set Uo(t) E U,(t) E U,- I(t) E UJ(t) G 0.) 
j=2 ,..., J-2. (2.7) 

Clearly, (2.2)-(2.5) can be viewed as the result of the discretization of (2.6) by the 
midpoint (leapfrog) rule 

(1/2k)(U”+ 1 - Un-‘) = F(U”), n = 1, 2, 3 ,...* P.8) 

Euler’s method 
(l/k)(U’ - U”) = F(U’), (2.9) 

provides the missing starting value. In formulae (2.8), (2.9), U” denotes the vector 
[U,“, vi,..., U,n-Jr. 

We now study the properties of the semidiscrete system (2.6). It is easily found 
that its order of local accuracy is O(h’). A bound for the global error is derived in 
[lo]. If we denote by e the (J - 3)-dimensional vector that has all its components 
equal to unity, the following identities hold for any vector V: 

It follows that 

eTF(V) = 0, (2.10) 

VTF(V) = 0. (2.11) 

$ e’U(t) = eT z U(t) = eTF(U(t)) = 0, (2.12) 
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$ (U’(f) U(f)) = 0. (2.13) 

In other words, the semidiscrete scheme (2.6) has the momentum 

e’U(t) = 1 uj(t) (2.14) 

and the energy 

U’(f) U(f) = x [ Uj(f)] 2 (2.15) 

as conserved quantities, thus reproducing a property of the KdV equation. We 
emphasize that the conservation of energy is achieved by means of the Galerkin-like 
treatment of the nonlinear term uu, [ 141. 

Several advantages follow from the existence of conserved quantities. In particular, 
we note that (2.13) implies boundedness of the solutions of (2.6), and therefore 
obviates the occurrence of blowup phenomena. 

Unfortunately, the discretization in time that must be performed to transform (2.6) 
into the Zabusky-Kruskal scheme (2.2) destroys the energy-conserving character of 
the semidiscrete scheme. In more precise terms, one has 

1 (Ujn+‘)‘-c (u;-‘)2 = O&3), 
j j 

(2.16) 

and of course, (2.16) is not sufficient to guarantee the boundedness of the solutions as 
n increases. 

In fact, the fully discrete scheme (2.2)-(2.5) can suffer from nonlinear instability, 
as can be seen in an example. The Zabusky-Kruskal method (2.2)-(2.5) was applied 
with h = 0.02, k = 0.005, and L = 2 to the smooth initial condition 

f(x) = 3c sech’(bx + d), (2.17) 

where c = 0.3, E = 0.000484, b = (c/~E)“~, and d = -b. The integration proceeded in 
a stable way for more than 3000 time steps and then suddenly exploded. There is no 
doubt that noisy or rough initial data would have led to an earlier blowup. 

It is easily seen that the Zabusky-Kruskal scheme conserves the momentum, and 
the same will be true for the scheme presented in Sections 3 and 4. 

We conclude this section with a study of the linearized stability condition for the 
Zabusky-Kruskal scheme, as this will play an important role in subsequent 
discussions. We consider the linearized equation 

u, + vu, + EU,,, = 0, (2.18) 

where n is a real constant. Vliegenthart [20] showed that when the linearized version 
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of (2.2) is employed to discretize (2.18), the von Neumann stability condition (for the 
periodic problem) takes the form 

my [(k/h) sin <(q - 2(s/h2)(1 - cos ())I < 1. (2.19) 

When the scheme is applied to the (nonlinear) KdV equation, we require (2.19) to 
hold for any q such that u,,,~” < q Q umBX, where u,,,~” and nmax are, respectively, the 
smallest and largest values of u(x, t). We assume that u,,,~” = 0, as this is the case in 
the examples considered in the next two sections. Then Vliegenthart suggests the 
stability condition 

whklax + W/hZ)) < 1, (2.20) 

which follows from (2.19) and the bounds lsin c\ < 1, ) 1 - cos cl Q 2. Clearly, the 
functions lsin <I, I 1 - cos rl do not attain their maxima for the same value of c, and 
therefore the bound (2.20) is not necessary in order to satisfy the von Neumann con- 
dition. 

In practice, we have found the requirement (2.20) rather pessimistic (and note that 
linearized stability conditions are usually optimistic). We now analyze (2.19) in 
detail, so as to derive a more realistic stability condition. 

From considerations of periodicity and symmetry, we conclude that it suffices to 
look at values of < between 0 and 7~. Then (k/h) sin Q is positive and -2(ke/h3) 
sin ((1 - cos 4) is negative. Recalling that q ranges between 0 and u,,,, we see that 
the condition 

on$: 2(ke/h3) sin <(l - cos <) < 1 (2.21) c 

is necessary if (2.19) is to hold for all relevant values of q. Since the maximum of 
sin r(l - cos [) is i $, (2.21) can be rewritten as 

3 fiks < 2h’. (2.22) 

Furthermore, (2.22) is also sufJicient to guarantee that (2.19) holds (with 
0 < q < u,,,), provided that (ku,,,)/h < 1. In Table I, we have displayed the 
maximum time step k allowed by formulae (2.20), (2.22), when u,,, = 0.9, 
E = 0.000484, and h = 0.02 or h = 0.01. (These are the values used in subsequent 
experiments.) 

TABLE I 

Maximum Time Step 

(2.20) (2.22) 

h = 0.02 3.5 x 10-3 6.4 x lo-’ 
h = 0.01 4.9 x 10-4 8.0 x 1o-4 
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It was found that (2.22) provided a better estimate of the allowable time step. For 
example, runs with h = 0.01, k = 0.0005 and h = 0.02, k = 0.005 proceeded in a 
stable manner for very long intervals of time, thus indicating that any potential 
instabilities should be attributed to nonlinear effects. (Note that linear instabilities 
would have been apparent from the early stages of the computation.) 

3. THE FIXED-STEP CONSERVATIVE SCHEME 

For the time integration of (2.6), we present in this section an explicit method that 
retains the energy-conserving character of the semidiscrete scheme. The new method 
is obtained when formula (2.8) is replaced by 

where 

u n+'-Un-'=2z,F(U"), n = 1, 2, 3 ,..., (3.1) 

5, = FT(U")(U"- U"-')/F*(U")F(U"), if F(U")#O, 
= 0, otherwise. (3.2) 

The vector U" is meant to approximate U(nk), and for this rason, it is reasonable to 
use the term fixed-step (cf. Section 4). Note that (2.9) still applies. A Taylor 
expansion reveals that (3.1) is first-order accurate, whilst (2.8) is second-order. 

From (3.1), we see that 

(,n+l)T u”+’ = (Un-' +~T,F(U"))~(U"-' + 2r,F(U")), 

and use of (3.2) and (2.11) yields 

(3.3) 

(un+ I)’ u”+ 1 = &JR- I)’ u”- I; (3.4) 

i.e., the new method conserves the energy. 
We note that even if F had been a linear function, the scheme (3.1) would have led 

to a nonlinear relation between the vectors Un+', U", and U"-'. This consideration 
precludes the application of the usual linearized analysis. 

In order to compare the performance of the FSC scheme with that of the Zabusky- 
Kruskal method, both were applied to the initial condition (2.17), with L = 2, c = 0.3, 
E = 0.000484, b = (c/4&)“‘, and d = -b. This problem was used in [2,9, 171, and has 
the theoretical solution 

u(x, t) = 3c sech’(bx - bet + d), (3.5) 

representing a single soliton with amplitude 0.9 and speec 0.3. The accuracy, 
efficiency, and stability of the methods will be assessed separately. 

. (i) Accuracy. From the results displayed in Table II, we conclude that the 
performances of the methods were comparable for 0 < r < 1. (See, however, (iv) 
below.) 
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TABLE II 

L’= Error x lo3 

ZK FSC 

h = 0.02, k = 0.005 t = 0.25 12.5 12.3 
t = 0.50 21.5 21.2 
t = 0.75 29.8 28.7 
t = 1.00 36.6 34.3 

h = 0.01, k = 0.0005 t = 0.25 3.24 2.86 
t = 0.50 5.45 3.83 
t = 0.75 7.40 3.25 
I= 1.00 9.75 2.13 

(ii) Eflciency. The CPU times (in an IBM 370/148) corresponding to the 
runs in Table II were 7 and 101 seconds for the FSC scheme, and 5 and 92 seconds 
for the Zabusky-Kruskal method. In the implementation used, the FSC code stored 
the vector F(U"), and was therefore more demanding in storage requirements. 

(iii) Stability. We have already observed that the Zabusky-Kruskal scheme 
can lead to blowup phenomena. The new method does not suffer from this 
shortcoming, as it conserves exactly a positive definite quadratic functional. 
Furthermore, this conservative behaviour is independent of the time step k. In 
particular, the FSC scheme generates bounded sequences U", n = 1,2,3,..., for any 
value of k. 

In the study of wave phenomena, however, the time step must be reduced not only 
on stability grounds, but also with a view to accuracy, and therefore, this property is 
not of much practical value. In fact, it was observed that when k was chosen so large 
as to violate condition (2.22), the FSC scheme produced a bounded but inaccurate 
solution, whereas the Zabusky-Kruskal method gave rise to machine overflows. A 
closer examination of the results produced by the FSC scheme showed that for k 
larger than the maximum step allowed by (2.22), the computed solution described a 
travelling wave with the correct profile (2.17), moving at a speed smaller than the 
theoretical. Table III shows the observed speed of the solitary wave in the interval 

TABLE III 

Computed Speed of the Soliton 

Theoretical 0.300 
k = 0.0005 0.300 
k = 0.001 0.240 
k = 0.002 0.125 
k = 0.005 0.055 
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0 < t < 1, when h was taken as 0.01. We conclude that the unconditional boun- 
dedness of the FSC scheme is achived at the price of retarding the speed of the 
waves. (Note that any Courant-Friedrichs-Lewy condition of the form k@ < 1 can 
be interpreted as imposing an upper limit either on the step k, for given A and h, or on 
the speed 1, for given k and h.) 

(iv) Long time intervals. Experiments involving large ranges of time t 
revealed that the FSC method was likely to produce larger phase errors than those 
associated with the Zabusky-Kruskal scheme. This might have been guessed from the 
presence of the stabilizing mechanism discussed above. Such phase errors can be 
regarded as a serious disadvantage of the FSC scheme, and can be suppressed by the 
device described in the next section. 

Before we end the study of the FSC method, we wish to point out that, in this 
method, each value UTO” depends on all the values UJ’ and Uj” - ‘, j = 2,3 ,..., J - 2, at 
the previous two time levels. Thus, the domain of dependence of the numerical 
solution is the whole interval 0 (x < L. In this respect, the behaviour of the new 
method resembles that of the usual implicit schemes. 

4. THE SELF-ADAPTIVE CONSERVATIVE SCHEME 

It has been pointed out that the FSC algorithm may suffer from phase errors. The 
origin of these errors can be traced back to formulae (3.1), (3.2). We see that the left- 
hand side of (3.1) corresponds to a time increment of 2k, while on the right-hand 
side, 25, = 2k + O(k’). The SASC scheme is given by formulae (3.1), (3.2), (2.9), 
(2.7), but now U” is regarded as an approximation to U(t,), where 

to = 0, t,=k, tn+,=2q,+tn-,, n = 1, 2, 3 ,.... (4.1) 

Clearly, the conservation of energy still holds, as the vectors U” produced by the 
SASC method are exactly those originated by the FSC scheme, with only the 
correspondence between the computed vectors and values of t being different. 

The SASC scheme can be regarded as the result of using the midpoint rule (2.8) in 
variable-step implementation, the steps r,, being automatically selected so as to 
guarantee conservation of energy. 

Table IV displays some numerical results corresponding to the SASC scheme (L, 
E, c, etc. are as before). We observe that for those runs for which the stability 
condition (2.22) is satisfied (namely, h = 0.02, k = 0.005 and h = 0.01, k = 0.0095), 
the performance of the SASC method is very similar to that of the Zabusky-Kruskal 
scheme. When k is increased, however, an interesting aspect of the behaviour is the 
following: the increment At, = t,+ I - t,, which is initially (i.e., when n = 0) equal to 
k, is steadily reduced as n increases, so as to yield an average time step t,/n for 
which (2.22) is satisfied. 
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TABLE IV 

SASC Errors X 10’ 

n t Lm Error x 10’ tin 

h = 0.02, k = 0.005 SO 0.2500 12.1 0.00500 
100 0.5000 21.2 0.00500 
150 0.7503 29.5 0.00500 
200 1.007 36.1 0.00500 

h = 0.02, k = 0.0 1 25 0.1889 15.9 0.00756 
50 0.3479 15.2 0.00696 
75 0.5079 30.2 0.00677 

100 0.6674 26.1 0.00667 

h = 0.01, k = 0.0005 500 0.2501 3.22 0.000500 
1000 0.5006 5.41 0.000500 
1500 0.7516 7.34 0.000500 
2000 1.003 1 9.76 0.000500 

h = 0.01, k = 0.001 250 0.2029 2.83 0.0008 12 
500 0.4020 4.84 0.000804 
750 0.6001 6.74 0.000800 

1000 0.7968 7.84 0.000800 

Attempts were also made to use larger values of k than those displayed in 
Table IV. The stability was preserved, of course, but the accuracy suffered to some 
extent. We conclude that the best policy is to use the SAX scheme with a value of k 
equal to or slightly larger than the maximum allowed by (2.22). When used in this 
manner, the SASC scheme exhibits the following advantages: 

(i) It does not suffer from nonlinear instability, as opposed to the Zabusky- 
Kruskal scheme; and 

(ii) the average tipe step t,/n would be close to the maximum value 
(2h3)/(3fis) given by (2.22), whilst for the Zabusky-Kruskal scheme, the time step 
must be chosen to be a fraction of that maximum value. (For instance, the last run in 
Table IV has an average step of 0.0008 and, for this time step, the Zabusky-Kruskal 
scheme causes an overflow at the early stages of the computation.) Thus, the new 
method requires fewer steps to span the same time interval. (But it should be recalled 
that Zabusky-Kruskal steps are marginally cheaper.) 

Note from Tables II and IV, and from the experiments quoted below, that the 
previously mentioned advantages are not gained at the expense of a loss of accuracy. 

The SASC method was found to perform satisfactorily in tests involving long time 
intervals. One of these experiments is reported in Table V. The initial condition was 
once more (2.17), with the values of L, c, E, b used previously. The parameter d, 
which governs the initial phase of the soliton, was set equal to -0.55b in order to 
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TABLE V 

Error x 10’ 

ZK SASC 

n Error n Error 

t= 1.5 3000 13.8 2006 13.2 
t=2 4000 17.9 2736 16.9 
t = 2.5 5000 21.8 3495 20.1 
t=3 6000 26.4 4264 24.2 

have a solution which is negligible at the boundaries for the range of time 0 < t < 3 
under consideration. The mesh size h was taken to be 0.01, while k was 0.0008. For 
comparison, we have included the results corresponding to the Zabusky-Kruskal 
scheme with k = 0.0005 and h = 0.01. 

5. MORE GENERAL EQUATIONS 

We assume that a time-dependent partial differential equations has been discretized 
in space in order to approximate it by the system of ordinary differential equations 

f U(f) = F(W)), (5.1) 

where U(t) is the vector of nodal values. It is not assumed that the original partial 
differential equation is one dimensional in space. We make the assumption that the 
identity 

V’F(V) = 0 (5.2) 

holds for all vectors V. From (5.2), we conclude, as in Section 2, that the energy 
UTU is a constant of motion for the solutions of (5.1). One would like to discretize 
(5.1) in time in such a way that, regardless of the step size k, the fully discrete 
scheme also conserves the energy. It is possible to prove [ 161 that such a requirement 
rules out the use of explicit linear-multistep or Runge-Kutta methods, and imposes an 
upper bound on the order (in time) of the scheme. On the other hand, if (5.1) is 
discretized by means of the implicit method 

U”+’ -U” = kF(f(U”+’ + U)) 

(which is called the one-leg trapezoidal rule in ODES jargon), one then has 

(U”+‘)T u”+ ‘ = (U”)’ U”. 

(5.3) 

(5.4) 
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Unfortunately, (5.4) does not hold if the nonlinear equations in (5.3) are not solved 
exactly [ 61. 

The method (3.1), (3.2) for the solution of (5.1) has the conservation property 

pJn+y un+* = (U”)’ U”? 

and is at the same time explicit. It is therefore very easy to program and economic to 
use (in terms of cost per step). The method can be used in either FS or SAS fashion. 

Formulae (3.1), (3.2) were first suggested, in a different context, by Lambert and 
McLeod [ 1 l] and Laurie [ 121. (See also [ 13, 161.) The method can be altered [ 161 in 
order to accommodate constants of motion other than UTU. 

Finally, we should like to point out the possibility of enforcing conservation 
properties in an a posteriori manner. The interested reader is referred to Navon [ 15) 
and the literature cited by him. (See in particular the work of Isaacson, Isaacson, and 
Turkel and Sasaki). 
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